
CSC 2541: Machine Learning for Healthcare

Lecture 5: Clinical Time Series Modelling

Professor Marzyeh Ghassemi, PhD
University of Toronto, CS/Med
Vector Institute



2

Course Reminders!

• No weekly reflection questions to MarkUs this week!

• You finished the homework!

• Your project proposals are due next week!
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Schedule

Jan 10, 2019, Lecture 1: Why is healthcare unique?
Jan 17, 2019, Lecture 2: Supervised Learning for Classification, Risk Scores and Survival
Jan 24, 2019, Lecture 3: Causal inference with observational data
Jan 31, 2019, Lecture 4: Fairness, Ethics, and Healthcare

Feb 7, 2019, Lecture 5: Clinical Time Series Modelling (Homework 1 due at 11:59 PM on MarkUs)
Feb 14, 2019, Lecture 6: Clinical Imaging (Project proposals due at 5PM on MarkUs)
Feb 21, 2019, Lecture 7: Clinical NLP and Audio 

Feb 28, 2019, Lecture 8: Clinical Reinforcement Learning
Mar 7, 2019,   Lecture 9: Missingness and Representations
Mar 14, 2019, Lecture 10: Generalization and transfer learning
Mar 21, 2019, Lecture 11: Interpretability / Humans-In-The-Loop / Policies and Politics

Mar 28, 2019, Course Presentations
April 4, 2019,  Course Presentations (Project report due 11:59PM)
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Outline

1. What’s Time Got To Do With It?

2. Case Study 1: MTGPs for Mortality Prediction and TBI

3. Case Study 2: RNNs/CNNs for Intervention Onset Prediction

4. What’s Out There?

5. Project Discussion
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Problem: Hospital decision-making / care planning

Observe Patient Data “Real-time” Prediction
 
Of {Drug/Mortality/Condition}

By Gap Time 

Before the Doctor Acted?
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How Do We Handle Time?

• An image gives a snapshot of an object, but a video dictates form!

• We want to model patient risks/treatments/outcomes as they live.

• Strategies:
• Amortize - Make features out of mean, min, max, etc. 
• Stack - Inputs of fixed size, and concatenate.
• Deal - Use a method that addresses dynamics.

• Focus on dealing in this lecture. 
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Remember This? Topics Improves Mortality Prediction

• Forward-facing ICU mortality prediction with notes. 

• Latent representations add predictive power.

• Topics enable accurately assess risk from notes.
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Add Information About Evolution of Signals

• Learn a new latent representation to evaluate multi-dimensional function 
similarity (θ).

MTGP models capture 
movements within and 

between signals. 

Transform signals into MTGP 
hyperparameter representation.

Compare patient similarly in the new 
representation. 
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Learning Single Task Gaussian Processes (STGP)

• Model each signal as a GP task with mean and covariance functions.

• GP’s commonly used to predict at new indices.

• Learn the parameters (θ) of the kernel from data.
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Single vs. Multi-task Gaussian Processes

•Assume we have m sets of: 
• Inputs Xi

• Temporal covariance hyperparameters θi
t

• Estimated functions fi

• Noise terms σi

• Outcomes yi

• We can train m single-task Gaussian process 
(STGP) (a) or a multi-task Gaussian process (MTGP) 
to relate the m tasks through all prior variables, with 
the tasks’ labels l and similarity matrix θc (b).
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Learning MTGPs As Representations

•Use an MTGP representation to relate m inputs through Kt and Kc.

[1] Bonilla, Edwin V., Kian M. Chai, and Christopher Williams. "Multi-task Gaussian process prediction." Advances in neural information processing systems. 2007.
[2] Carl Rasmussen’s minimize.m was used for gradient-based optimization of the marginal likelihood.  

Movement within a signalMovement between signals
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Estimating Signal in Traumatic Brain Injury Patients

•Intracranial pressure (ICP) and mean arterial blood pressure (ABP) are 
important indicators of cerebrovascular autoregulation (CA) in traumatic Brain 
Injury (TBI) patients. 

• CA sustains adequate cerebral blood flow1 and impairment risks secondary 
brain damage and mortality.2 

• CA is assessed using a sliding window Pearson’s correlation between the 
ICP and ABP – the Pressure-Reactivity Index (PRx)3.

[1] Werner, C., and K. Engelhard. "Pathophysiology of traumatic brain injury." British journal of anaesthesia 99.1 (2007): 4-9.
[2] Hlatky, Roman, Alex B. Valadka, and Claudia S. Robertson. "Intracranial pressure response to induced hypertension: role of dynamic pressure autoregulation." Neurosurgery 57.5 (2005): 917-923.
[3] Czosnyka, Marek, et al. "Continuous assessment of the cerebral vasomotor reactivity in head injury." Neurosurgery 41.1 (1997): 11-19.
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TBI Estimation Methodology

•PRx isn’t calculated when either signal is 
contaminated - evaluate STGPs/MTGPs for 
interpolation, and MTGPs for PRx estimation.

•Collected data from 35 TBI patients with 24+ hours of 
ICP and ABP recordings sampled every 10 seconds. 

• Selected 30 ten-minute windows where ICP/ABP 
were free from artifacts and missing values from each 
patient recording; randomly introduced artificial gaps in 
both signals (x’s).
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MTGP Representations Improve Signal Forecasting 
and Outcome Prediction

•MTGPs outperform STGPs in 
signal reconstruction.

•Automatically estimate 
cerebrovascular autoregulation.

* Final cohort consisted of 10,202 patients, with 313,461 notes.

Performance on Signal 
Forecasting

Performance on Mortality 
Prediction 

•MTGP hyperparameter 
representations improve 
short-term mortality prediction.
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Can We Predict Interventions?

• 34,148 ICU patients from MIMIC-III
• 5 static variables (gender, age, etc.)
• 29 time-varying vitals and labs (oxygen saturation, lactate, etc.)
• All clinical notes for each patient stay
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Raw Physiology vs “Words” Embedding

• Many values are missing!
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Raw Physiology vs “Words” Embedding

• Many values are missing!
• Z-score existing variables, rounding to the nearest int.
• Convert each z-score into its own binary column.

-1 A row of all zeros indicates 
a missing value at that hour.
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Many Ways to Model, What Do We Learn?

24

LSTM CNN

2 Layer/512 node LSTM with sequential hourly 
data; at end of window, use the final hidden 
state to predict output.

CNN for temporal convolutions at 3/4/5 hours, 
max-pool, combine the outputs, and run through 2 
fully connected layers for prediction.

SSAM

Learn model parameters 
over patients with 
variational EM. 

Logistic regression
(with label-balanced 
cost function)

... ... ...

...... ... ...
Infer hourly distribution over 
hidden states with HMM DP 
(fwd alg.).

... ......
... ...... ...

Predict onset 
in advance
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To model sequences, we need:

1. To deal with variable-length sequences
2. To maintain sequence order
3. To keep track of long-term dependencies
4. To share parameters across the sequence

Let’s turn to recurrent neural networks.

MIT 6.S191 | Intro to Deep Learning | IAP 2018
Slides courtesy of Harini Suresh +

RNNs on Sequences
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MIT 6.S191 | Intro to Deep Learning | IAP 2018

Example Network
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let’s take a look at 
this one hidden unit

MIT 6.S191 | Intro to Deep Learning | IAP 2018

Example Network



RNNS remember their previous state: 

t = 0

x0 : “it” W

U

s0

s1

MIT 6.S191 | Intro to Deep Learning | IAP 2018



RNNS remember their previous state: 

t = 1

x1 : “was” W

U

s1

s2
1
2

MIT 6.S191 | Intro to Deep Learning | IAP 2018



“Unfolding” the RNN across time: 

x0

W

s0

U

s1

U

x1
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x2
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s2

U
. . . 

time

MIT 6.S191 | Intro to Deep Learning | IAP 2018



“Unfolding” the RNN across time: 

x0

W

s0

U

s1

U

x1
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x2
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s2

U
. . . 

time

notice that we use the 
same parameters, 
W and U 

MIT 6.S191 | Intro to Deep Learning | IAP 2018



“Unfolding” the RNN across time: 

x0

W

s0

U
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s2
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. . . 

time

sn can contain 
information from all 
past timesteps

MIT 6.S191 | Intro to Deep Learning | IAP 2018



Why do LSTMs help? 

1. Forget gate allows information to pass through 

unchanged 

2. Cell state is separate from what’s outputted 

3. sj depends on sj-1 through addition!  
→ derivatives don’t expand into a long product!

MIT 6.S191 | Intro to Deep Learning | IAP 2018
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Predict Onsets of Interventions

• Delay prediction by 6-hour gap time.

• Attempt to predict onest, weaning, staying off, staying on. 
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NNs Do Well; Improved Representation Helps
A

re
a-

un
de

r-
R

O
C

Representations with 
“physiological words” for 
missingness significantly 
increased AUC for 
interventions with the 
lowest proportion of 
examples.

Deep models perform well 
in general, but words are 
important for ventilation 
tasks.
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Feature-Level Occlusions Identify Per-Class Features
D

ec
re

as
e 

in
 A

U
C

Physiological data 
were more 
important for the 
more invasive 
interventions.

Clinical note topics 
were more important 
for less invasive 
tasks.
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Convolutional Filters Target Short-term Trajectories

Higher diastolic blood 
pressure, respiratory 
rate, and heart rate, 
and lower oxygen 

saturation : 
Hyperventilation 

Most differentiated features of 10 real patient trajectories that are highest/lowest activating for each task. 

Decreased systolic blood 
pressure, heart rate and oxygen 

saturation rate : 
Altered peripheral perfusion or 

stress hyperglycemia 

Decreased creatinine, 
phosphate, oxygen 

saturation and blood 
urea nitrogen : 

Neuromuscular 
respiratory failure 
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Convolutional Filters Target Short-term Trajectories

● “Hallucinations” give insight into underlying properties of the 
network. 

● The trajectories are made to maximize the output of the model, (do 
not correspond to physiologically plausible trajectories).

Blood pressure drops are maximally 
activating for vasopressor onset.

Respiratory rate decreasing is maximally 
activating for ventilation onset.
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Remember That Life Happens Outside the Clinic!

42
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Example: Wearable Data from Project Myalo

• Phone sensors offer a potential low-cost, low-barrier method for digital 
quantification of behavior that can achieve scalability better than other 
wearable sensors

• Tracking over time: mood, sleep, physical activity, cognitive function, social 
activities!

Data Storage + 
ProcessingPatient / Person

Patient Mobile App

Active + Passive Data 
Collection

Data Analytics

Digital Phenotyping / Measurement Tools

Active Audio / Video Diaries
Active Surveys / Tasks

Passive Phone Sensors
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Some Technology Required...
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Risk Profile

Location 
Variability

Social Media

Derived Clinical 
Insights

Raw Data 
Sources

SMS / Call Logs

GPS

Microphone / 
Audio

Accelerometer / 
Gyroscope

Temperature / 
Light

Phone / App / 
Social Media 

Usage

Processed 
Behavioral 

Labels

Physical Activity

Vocal Features

Text / Speech 
Features

Geolocation
(home, work, …)

Sleep

Patient 
Mobile 

App

Psychomotor 
Function

Sleep Quality

Circadian 
Rhythm

Voice & Speech 
Markers

Social Activity

Predictive 
Modeling

Active Surveys / 
Tasks

Cognitive 
Function

D
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Mood / Affect

Saeb, PeerJ (2016)
Aung, Depression and Anxiety (2017)
Insel, JAMA (2017)
Wang, Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies (2017)
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What Can We Do With A Digital Phenotype?

“Moment-by-moment quantification of the individual-level human 
phenotype in situ using data from personal digital devices”

• Expert-Reported Data (EHR)

• Self-Reported Data (Surveys)

• Passive Data (Ambulatory)
• Spatial trajectories (GPS)
• Physical mobility (accelerometer)
• Social networks/dynamics (call/text)
• Voice samples (microphone)

JP Onnela and Scott Rauch, Neuropsychopharmacology (2016)
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What Could We Ask With A Rich Phenotype?

• How do depressed patients (Expert-Reported) divide time between home 
and work (Passive)?

• Do the size and reciprocity of interaction networks (Passive) help with 
anxiety (Self-Reported)?

• Does activity (Passive) impact mood (Self-Reported) differently  
post-partum (Expert-Reported)? 
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Main Take Aways

• Combining data across modalities and time can be powerful.

• Kernel representations are intuitive comparisons for intra/inter signal 
modelling.

• Representations improve task performance.
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