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Course Reminders!

e No weekly reflection questions to MarkUs this week!
¢ You finished the homework!

e Your project proposals are due next week!



Schedule

Jan 10, 2019, Lecture 1: Why is healthcare unique?
Jan 17, 2019, Lecture 2: Supervised Learning for Classification, Risk Scores and Survival

Jan 24, 2019, Lecture 3: Causal inference with observational data
Jan 31, 2019, Lecture 4: Fairness, Ethics, and Healthcare

Feb 7, 2019, Lecture 5: Clinical Time Series Modelling (Homework 1 due at 11:59 PM on MarkUs)
Feb 14, 2019, Lecture 6: Clinical Imaging (Project proposals due at 5PM on MarkUs)
Feb 21, 2019, Lecture 7: Clinical NLP and Audio

Feb 28, 2019, Lecture 8: Clinical Reinforcement Learning

Mar 7, 2019, Lecture 9: Missingness and Representations

Mar 14, 2019, Lecture 10: Generalization and transfer learning

Mar 21, 2019, Lecture 11: Interpretability / Humans-In-The-Loop / Policies and Politics

Mar 28, 2019, Course Presentations
April 4, 2019, Course Presentations (Project report due 11:59PM)



Outline

1. What’s Time Got To Do With It?

2. Case Study 1: MTGPs for Mortality Prediction and TBI

3. Case Study 2: RNNs/CNNs for Intervention Onset Prediction
4. What’s Out There?

5. Project Discussion
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Problem: Hospital decision-making / care planning
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Problem: Hospital decision-making / care planning

Obferve Patient Data “Real-time” Prediction
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How Do We Handle Time?

e Animage gives a snapshot of an object, but a video dictates form!
e We want to model patient risks/treatments/outcomes as they live.

e Strategies:
e Amortize - Make features out of mean, min, max, etc.
e Stack - Inputs of fixed size, and concatenate.
e Deal - Use a method that addresses dynamics.

e Focus on dealing in this lecture.
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Remember This? Topics Improves Mortality Prediction

In-Hospital Mortality
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e Forward-facing ICU mortality prediction with notes.
¢ Latent representations add predictive power.

¢ Topics enable accurately assess risk from notes.
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Add Information About Evolution of Signals

e |earn a new latent representation to evaluate multi-dimensional function
similarity (0).
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Clinical Signals —mm> MTGP Hyperparameters —_— Latent Space
MTGP models capture Transform signals into MTGP Compare patient similarly in the new
movements within and hyperparameter representation. representation.

between signals.
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Learning Single Task Gaussian Processes (STGP)

e Model each signal as a GP task with mean and covariance functions.

Yn = .(](1_7:'”) ~ GP (771'(571-)~ 'L‘,'(fne :?;7))

e GP’s commonly used to predict at new indices.
(Y™ |x*, x,y) ~ .\"(m(y‘)w \'ur(y'))

m(y*) = K(x,.x")"K(x,x) 'y
var(y*) = K((x*,x") — K(x.x’)TK(x.X)_lK(x.x')

e | earn the parameters (8) of the kernel from data.
NLML = —log p(y|x,0)

1 ‘ 1
= 310,.9_;‘K‘ + 3yTK‘1y — %1()g(27r)
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Single vs. Multi-task Gaussian Processes

eAssume we have m sets of:
* Inputs X'
e Temporal covariance hyperparameters G’t
¢ Estimated functions f
* Noise terms o
e Qutcomes y'

¢ We can train m single-task Gaussian process
(STGP) (a) or a multi-task Gaussian process (MTGP)
to relate the m tasks through all prior variables, with
the tasks’ labels / and similarity matrix 6 (b).
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Learning MTGPs As Representations

e Use an MTGP representation to relate m inputs through K, and K .
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[1] Bonilla, Edwin V., Kian M. Chai, and Christopher Williams. "Multi-task Gaussian process prediction." Advances in neural information processing systems. 2007.
[2] Carl Rasmussen’s minimize.m was used for gradient-based optimization of the marginal likelihood. 14




Estimating Signal in Traumatic Brain Injury Patients
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e|ntracranial pressure (ICP) and mean arterial blood pressure (ABP) are
important indicators of cerebrovascular autoregulation (CA) in traumatic Brain
Injury (TBI) patients.

 CA sustains adequate cerebral blood flow' and impairment risks secondary
brain damage and mortality.?

e CA is assessed using a sliding window Pearson’s correlation between the
ICP and ABP - the Pressure-Reactivity Index (PRx)3.

[1] Werner, C., and K. Engelhard. "Pathophysiology of traumatic brain injury." British journal of anaesthesia 99.1 (2007): 4-9.
[2] Hlatky, Roman, Alex B. Valadka, and Claudia S. Robertson. "Intracranial pressure response to induced hypertension: role of dynamic pressure autoregulation." Neurosurgery 57.5 (2005): 917-923.
[3] Czosnyka, Marek, et al. "Continuous assessment of the cerebral vasomotor reactivity in head injury." Neurosurgery 41.1 (1997): 11-19.
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TBI Estimation Methodology

*PRx isn’t calculated when either signal is
contaminated - evaluate STGPs/MTGPs for
interpolation, and MTGPs for PRx estimation.

eCollected data from 35 TBI patients with 24+ hours of
ICP and ABP recordings sampled every 10 seconds.

e Selected 30 ten-minute windows where ICP/ABP
were free from artifacts and missing values from each
patient recording; randomly introduced artificial gaps in
both signals (x’s).
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MTGP Representations Improve Signal Forecasting
and Outcome Prediction

Performance on Signal Performance on Mortality
Forecasting Prediction
Features Hospital

Signal Measure | STGP ||MTGP Mortality
ICP RMSE 0.91 0.69 Ave. Topics 0.759
: MSLL 0.6 0.45 SAPS-1 + MTGP 0.775
ABP RMSE 2.77 1.98 Ave. Topics + MTGP 0.788
MSLL 0.65 0.55 | SAPS-I + Ave. Topics + MTGP 0.812

e MTGPs outperform STGPs in

signal reconstruction. * MTGP hyperparameter

representations improve
short-term mortality prediction.

¢ Automatically estimate
cerebrovascular autoregulation.

17

* Final cohort consisted of 10,202 patients, with 313,461 notes.
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Can We Predict Interventions?

34,148 ICU patients from MIMIC-III
5 static variables (gender, age, etc.)

29 time-varying vitals and labs (oxygen saturation, lactate, etc.)

All clinical notes for each patient stay

static narrative numerical

time

ID | Hour | Var1
L

3 0 64.1 | ...

3 1 40.2

Extract as hourly

timeseries

for K topics, D documents, N word

a, B : params for Dirichlet priors

@, ~ Dir(p) : word dist. for topic &

Unsupervised LDA model

learna; B ; 0,; ¢,
s
6, ~ Dir(a) : topic dist. for document d
\\

Replicate across time
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Raw Physiology vs “Words” Embedding

Numerical Physiological Words
patient ho! in glucose patient ho glucose. 2 | gl 1 | glucose. 0 glucose 1 | glucose
3 1 3 1 0 0 0 0 0
3 2 NaN _ 3 2 0 0 0 0 0
3 3 101.2344 3 3 0 1 0 0 0

e Many values are missing!
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Raw Physiology vs “Words” Embedding

Numerical Physiological Words
patient ho! patient h glucose, 2 | glucose_-1  glucose 0  glucose 1 | glucose
3 1 3 1 0 0 0 0 0
3 2 3 2 0 0 0 0 0
3 3

e Many values are missing!
e /-score existing variables, rounding to the nearest int.
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Raw Physiology vs “Words” Embedding

Numerical Physiological Words
patient hours in glucose patient hours in glucose_-2 | glucose_-1 | glucose_0 @ glucose_1 | glucose_2
3 1 3 1 0 0 0 0 0
3 2 - . 3 2 0 0 0 0 0
3 3 3 0 1 0 0 0

e Many values are missing!
e /-score existing variables, rounding to the nearest int.
e (Convert each z-score into its own binary column.
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Raw Physiology vs “Words” Embedding

Numerical Physiological Words

patient hours in glucose patient hours in glucose_-2 | glucose_-1 | glucose_0 @ glucose_1 | glucose_2

3 1 3 1 0 0 0 0 0
3 2 - . 3 2 0 0 0 0 0
3 3 3 0 1 0 0 0
1 A row of all zeros indicates

a missing value at that hour.

e Many values are missing!
e /-score existing variables, rounding to the nearest int.
e (Convert each z-score into its own binary column.
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Many Ways to Model, What Do We Learn?

SSAM
Learn model parameters Infer hourly distribution over Logistic regression Predict onset
over patients with hidden states with HMM DP (with label-balanced in advance
variational EM. (fwd alg.). cost function)
LSTM CNN
I;] softmax -
. E} e Ny - e= | [ X| | *[]
time \
2 Layer/512 node LSTM with sequential hourly CNN for temporal convolutions at 3/4/5 hours,
data; at end of window, use the final hidden max-pool, combine the outputs, and run through 2

fully connected layers for prediction.

state to predict output. o
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Many Ways to Model, What Do We Learn?

SSAM

variationa
LSTM
1 coftmax
——

LSTM
layers

Input per

x, , T, 4 timestep

2 Layer/512 node LSTM with sequential hourly
data; at end of window, use the final hidden
state to predict output.

25

—_—— ST

Fully connected Output

1 D tem ral
po layers  softmax

nnnnnnnn

CNN for temporal convolutions at 3/4/5 hours,
max-pool, combine the outputs, and run through 2

fully connected layers for prediction. 25



Many Ways to Model, What Do We Learn?

SSAM

variationa

a4 LSTM )

1 softmax

=
LSTM
layers

Input per

z, , z,_, timestep

2 Layer/512 node LSTM with sequential hourly
data; at end of window, use the final hidden

@te to predict output.
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—_—— ST

Fully connected Output

1 D tem ral
po layers  softmax

nnnnnnnn

CNN for temporal convolutions at 3/4/5 hours,
max-pool, combine the outputs, and run through 2

fully connected layers for prediction. 26



RNNs on Sequences

To model sequences, we need:

To deal with variable-length sequences
To maintain sequence order

To keep track of long-term dependencies
To share parameters across the sequence

o=

Let’s turn to recurrent neural networks.

Slides courtesy of Harini Suresh +
MIT 6.5191 | Intro to Deep Learning | IAP 2018



Example Network

input hidden output

MIT 6.5191 | Intro to Deep Learning | IAP 2018



Example Network

let’s take a look at
this one hidden unit



RNNS remember their previous state:

0
\W‘ xo : vector representing first word

so : cell state at t = 0 (some initialization)
s1:cell stateatt =1

s1 = tanh(Wxo + Usog)

W, U : weight matrices



RNNS remember their previous state:

n

\W‘

X, “was

W, U : weight matrices

x1 : vector representing second word
s1:cell stateatt =1
So : cell state at ¢t = 2

so = tanh(Wzxy + Usy)



“Unfolding” the RNN across time:

time




“Unfolding” the RNN across time:

time

MIT 6.5191 | Intro to Deep Learning | IAP 2018

notice that we use the
same parameters,
W and U



“Unfolding” the RNN across time:

time

MIT 6.5191 | Intro to Deep Learning | IAP 2018

s, can contain
information from all
past timesteps



Why do LSTMs help?

1. Forget gate allows information to pass through

unchanged

2. Cell state is separate from what's outputted

3. sjdepends ons through addition!

— derivatives don't expand into a long product!

MIT 6.5191 | Intro to Deep Learning | IAP 2018



Predict Onsets of Interventions

e Delay prediction by 6-hour gap time.

e Attempt to predict onest, weaning, staying off, staying on.

slice size
1
Patient
Data (X)
gap prediction window
 _
Intervention
Signal (Y) J_I—-

36

Onset | Weaning | Stay Off | Stay On
Ventilation 0.005 0.017 0.798 0.18
Vasopressor 0.008 0.016 0.862 0.114
NI-Ventilation || 0.024 | 0.035 0.695 0.246
Colloid Bolus || 0.003 - - -
Crystalloid Bol || 0.022 - - -




NNs Do Well; Improved Representation Helps

Intervention Type
Task | Model || VENT | NI-VENT | VASO | COL BOL | CRYS BOL
Baseline | 0.60 | 0.66 | 043 | 065 0.67 , :
o | LSTMRaw | 06l | _075 | 077 | 052 0.70 Representations with
=] . .
o= |Pan"™| o 82z | om0 : “physiological words” for
Baseline 0.83 0.71 074 | @ m— - H H H '
Q oy | L™MRaw | 0% | os0 |em | - | missingness significantly
@) 22 | LSTMWords | 090 | 081 | 091 - - increased AUC for
o CNN 091 | 080 | 091 3 3 : ) .
I 5 Bascline | 050 | 079 | 055 - - interventions with the
— 2, | LSTMRaw || 096 | 086 | 096 ’ - )
) Z2 | LSTMWords | 097 | 086 | 095 ; s lowest proportion of
© CNN 0.96 086 | 0.96 - -
% 5 Baseline 094 | 071 093 . - examples.
LSTMRaw | 095 | 086 | 096 - -
&5 2 S | LSTMWords | 097 | 086 | 095
o CNN 095 | 086 | 096
| -
Baseli 0.72
L B i | o Deep models perform well
s D .
=2 || oss in general, but words are

important for ventilation
tasks.
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Decrease in AUC

Feature-Level Occlusions ldentify Per-Class Features
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Physiological data
were more
important for the
more invasive
interventions.

Clinical note topics
were more important
for less invasive
tasks.



Convolutional Filters Target Short-term Trajectories

Most differentiated features of 10 real patient trajectories that are highest/lowest activating for each task.

Ventilation
diastolic BP

heart rate

e—

oxygen saturation

respiratory rate

Higher diastolic blood
pressure, respiratory
rate, and heart rate,

and lower oxygen

saturation :

Hyperventilation

Vasopressor

heart rate
125

100 .
75

50

oxygen saturation
102 Y9

LG S
o6 N
93

systolic BP
180
150 £
120
20
topic 3

0.30
0.15 | -

e
0.00

Non-inv. Vent

o blood urea nitrogen

creatinine

oxygen saturation

——

phosphate

Decreased systolic blood
pressure, heart rate and oxygen
saturation rate :

Altered peripheral perfusion or
stress hyperglycemia

39

——— top 10 trajectories
—— bottom 10 trajectories

Decreased creatinine,
phosphate, oxygen
saturation and blood
urea nitrogen :
Neuromuscular
respiratory failure



Convolutional Filters Target Short-term Trajectories

e “Hallucinations” give insight into underlying properties of the
network.

e The trajectories are made to maximize the output of the model, (do
not correspond to physiologically plausible trajectories).

diastolic BP heart rate mean BP respiratory rate systolic BP

T

vasopressor onset
ventilation onset

Blood pressure drops are maximally Respiratory rate decreasing is maximally
activating for . activating for ventilation onset.
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emember That Life Happens Outside the Clinic!

Comfort measures
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Example: Wearable Data from Project Myalo

Digital Phenotyping / Measurement Tools

Active Surveys / Tasks
Active Audio / Video Diaries "ot

Passive Phone Sensors ’ 9
Dt Stor g

[REHSE (Mol App SSSSSSSS

Patient / Person

______________________________________________________________________

¢ Phone sensors offer a potential low-cost, low-barrier method for digital
quantification of behavior that can achieve scalability better than other

wearable sensors

e Tracking over time: mood, sleep, physical activity, cognitive function, social
activities!
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Some Technology Required...

SENSING MENTAL HEALTH.

5 LIFEGRAPH

Processed . . . Purple Robot
Raw Data X Derived Clinical P - S
Behavioral . ' ' ® e
Sources Insights & vou dorthave any deicss
Labels

Social Media

Voice & Speech
Markers

Sleep

Patient . . Location
Mobile SMS / Call Logs Physical Activity Variability
App -
oo Microphone / Text / Speech Circadian I:;ig':l:::

Audio Features

Rhythm

Social Activity — A"‘

Risk Profile

— GPS Vocal Features

Geolocation
(home, work, ...)

Accelerometer /
Gyroscope

Psychomotor
Function

Data Storage / Processing
Machine Learning Algorithms

Temperature /

Uit Social Media Sleep Quality
Active Surveys / . Mood / Affect l Cognitive

IESS Function

Saeb, PeerJ (2016)

Aung, Depression and Anxiety (2017)

Insel, JAMA (2017)

Wang, Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies (2017) 44 44



What Can We Do With A Digital Phenotype?

“Moment-by-moment quantification of the individual-level human
phenotype in situ using data from personal digital devices”

e Expert-Reported Data (EHR)
o Self-Reported Data (Surveys)

e Passive Data (Ambulatory)
e Spatial trajectories (GPS)
e Physical mobility (accelerometer)
e Social networks/dynamics (call/text)
e \oice samples (microphone)

45
JP Onnela and Scott Rauch, Neuropsychopharmacology (2016)



What Could We Ask With A Rich Phenotype?

e How do depressed patients (Expert-Reported) divide time between home
and work (Passive)?

e Do the size and reciprocity of interaction networks (Passive) help with
anxiety (Self-Reported)?

e Does activity (Passive) impact mood (Self-Reported) differently
post-partum (Expert-Reported)?

46



Main Take Aways

e (Combining data across modalities and time can be powerful.

e Kernel representations are intuitive comparisons for intra/inter signal
modelling.

e Representations improve task performance.

47
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