CSC 2541: Machine Learning for Healthcare

Lecture 5: Clinical Time Series Modelling

Professor Marzyeh Ghassemi, PhD University of Toronto, CS/Med Vector Institute

Course Reminders!

- No weekly reflection questions to MarkUs this week!
- You finished the homework!
- Your project proposals are due next week!

Schedule

Jan 10, 2019, Lecture 1: Why is healthcare unique? Jan 17, 2019, Lecture 2: Supervised Learning for Classification, Risk Scores and Survival Jan 24, 2019, Lecture 3: Causal inference with observational data Jan 31, 2019, Lecture 4: Fairness, Ethics, and Healthcare

Feb 7, 2019, Lecture 5: Clinical Time Series Modelling (Homework 1 due at 11:59 PM on MarkUs) Feb 14, 2019, Lecture 6: Clinical Imaging (Project proposals due at 5PM on MarkUs) Feb 21, 2019, Lecture 7: Clinical NLP and Audio

Feb 28, 2019, Lecture 8: Clinical Reinforcement Learning
Mar 7, 2019, Lecture 9: Missingness and Representations
Mar 14, 2019, Lecture 10: Generalization and transfer learning
Mar 21, 2019, Lecture 11: Interpretability / Humans-In-The-Loop / Policies and Politics

Mar 28, 2019, Course Presentations April 4, 2019, Course Presentations (Project report due 11:59PM)

Outline

- 1. What's Time Got To Do With It?
- 2. Case Study 1: MTGPs for Mortality Prediction and TBI
- 3. Case Study 2: RNNs/CNNs for Intervention Onset Prediction
- 4. What's Out There?
- 5. Project Discussion

Outline

- 1. What's Time Got To Do With It?
- 2. Case Study 1: MTGPs for Mortality Prediction and TBI
- 3. Case Study 2: RNNs/CNNs for Intervention Onset Prediction
- 4. What's Out There?
- 5. Project Discussion

Problem: Hospital decision-making / care planning

Observe Patient Data

"Real-time" Prediction

Of {Drug/Mortality/Condition}

By Gap Time

Problem: Hospital decision-making / care planning

Observe Patient Data

"Real-time" **Prediction**

Of {Drug/Mortality/Condition}

By Gap Time

How Do We Handle **Time**?

- An image gives a snapshot of an object, but a video dictates form!
- We want to model patient risks/treatments/outcomes as they **live**.
- Strategies:
 - Amortize Make features out of mean, min, max, etc.
 - Stack Inputs of fixed size, and concatenate.
 - Deal Use a method that addresses dynamics.
- Focus on dealing in this lecture.

Outline

- 1. What's Time Got To Do With It?
- 2. Case Study 1: MTGPs for Mortality Prediction and TBI
- 3. Case Study 2: RNNs/CNNs for Intervention Onset Prediction
- 4. What's Out There?
- 5. Project Discussion

Remember This? Topics Improves Mortality Prediction

- Forward-facing ICU mortality prediction with notes.
- Latent representations add predictive power.
- Topics enable accurately assess risk from notes.

Add Information About Evolution of Signals

 Learn a new latent representation to evaluate multi-dimensional function similarity (θ).

Learning Single Task Gaussian Processes (STGP)

• Model each signal as a GP task with mean and covariance functions.

$$\tilde{\mathbf{y}}_{\mathbf{n}} = g(\vec{x_n}) \sim \mathcal{GP}\Big(m(\vec{x_n}), k(\vec{x_n}, \vec{x'_n})\Big)$$

• GP's commonly used to predict at new indices.

 $p(\mathbf{y}^* | \mathbf{x}^*, \mathbf{x}, \mathbf{y}) \sim \mathcal{N}\left(m(\mathbf{y}^*), \operatorname{var}(\mathbf{y}^*)\right)$ $m(\mathbf{y}^*) = \mathbf{K}(\mathbf{x}, \mathbf{x}^*)^\top \mathbf{K}(\mathbf{x}, \mathbf{x})^{-1} \mathbf{y}$ $\operatorname{var}(\mathbf{y}^*) = \mathbf{K}(\mathbf{x}^*, \mathbf{x}^*) - \mathbf{K}(\mathbf{x}, \mathbf{x}^*)^\top \mathbf{K}(\mathbf{x}, \mathbf{x})^{-1} \mathbf{K}(\mathbf{x}, \mathbf{x}^*).$

• Learn the parameters (θ) of the **kernel** from **data**.

NLML =
$$-\log p(\mathbf{y}|\mathbf{x}, \boldsymbol{\theta})$$

= $\frac{1}{2}\log|\mathbf{K}| + \frac{1}{2}\mathbf{y}^{\top}\mathbf{K}^{-1}\mathbf{y} + \frac{n}{2}\log(2\pi)$

Single vs. Multi-task Gaussian Processes

•Assume we have *m* sets of:

- Inputs Xⁱ
- Temporal covariance hyperparameters θ_t^i
- Estimated functions fⁱ
- Noise terms σ^i
- Outcomes yⁱ

• We can train *m* single-task Gaussian process (STGP) (a) or a multi-task Gaussian process (MTGP) to relate the *m* tasks through all prior variables, with the tasks' labels *I* and similarity matrix θ_c (b).

Learning MTGPs As Representations

• Use an MTGP representation to relate m inputs through K_t and K_c .

[1] Bonilla, Edwin V., Kian M. Chai, and Christopher Williams. "Multi-task Gaussian process prediction." Advances in neural information processing systems. 2007. [2] Carl Rasmussen's minimize.m was used for gradient-based optimization of the marginal likelihood. 14

Estimating Signal in Traumatic Brain Injury Patients

•Intracranial pressure (ICP) and mean arterial blood pressure (ABP) are important indicators of cerebrovascular autoregulation (CA) in traumatic Brain Injury (TBI) patients.

• CA sustains adequate cerebral blood flow¹ and impairment risks secondary brain damage and mortality.²

• CA is assessed using a sliding window Pearson's correlation between the ICP and ABP – the Pressure-Reactivity Index (PRx)³.

^[1] Werner, C., and K. Engelhard. "Pathophysiology of traumatic brain injury." British journal of anaesthesia 99.1 (2007): 4-9.

 ^[2] Hlatky, Roman, Alex B. Valadka, and Claudia S. Robertson. "Intracranial pressure response to induced hypertension: role of dynamic pressure autoregulation." *Neurosurgery* 57.5 (2005): 917-923.
 [3] Czosnyka, Marek, et al. "Continuous assessment of the cerebral vasomotor reactivity in head injury." *Neurosurgery* 41.1 (1997): 11-19.

TBI Estimation Methodology

•PRx isn't calculated when either signal is contaminated - evaluate STGPs/MTGPs for interpolation, and MTGPs for PRx estimation.

•Collected data from 35 TBI patients with 24+ hours of ICP and ABP recordings sampled every 10 seconds.

• Selected 30 ten-minute windows where ICP/ABP were free from artifacts and missing values from each patient recording; randomly introduced artificial gaps in both signals (*x*'s).

MTGP Representations Improve Signal Forecasting and Outcome Prediction

Performance on Signal Forecasting

Signal	Measure	STGP	MTGP
ICP	RMSE	0.91	0.69
	MSLL	0.6	0.45
ABP	RMSE	2.77	1.98
	MSLL	0.65	0.55

- MTGPs outperform STGPs in signal reconstruction.
- Automatically estimate cerebrovascular autoregulation.

Performance on Mortality Prediction

Features	Hospital Mortality
Ave. Topics	0.759
SAPS-I + MTGP	0.775
Ave. Topics + MTGP	0.788
SAPS-I + Ave. Topics + MTGP	0.812

• MTGP hyperparameter representations improve short-term mortality prediction.

Outline

- 1. What's Time Got To Do With It?
- 2. Case Study 1: MTGPs for Mortality Prediction and TBI

3. Case Study 2: RNNs/CNNs for Intervention Onset Prediction

- 4. What's Out There?
- 5. Project Discussion

Can We Predict Interventions?

- 34,148 ICU patients from MIMIC-III
- 5 static variables (gender, age, etc.)
- 29 time-varying vitals and labs (oxygen saturation, lactate, etc.)
- All clinical notes for each patient stay

variables

Numerical

patient	hours in	glucose
3	1	NaN
3	2	NaN
3	3	101.2344
÷	:	:

patient	hours in	glucose2	glucose1	glucose_0	glucose_1	glucose_2
3	1	0	0	0	0	0
3	2	0	0	0	0	0
3	3	0	1	0	0	0
	:	:	: :	:	:	

Physiological Words

• Many values are missing!

Physiological Words

patient	hours in	glucose2	glucose1	glucose_0	glucose_1	glucose_2
3	1	0	0	0	0	0
3	2	0	0	0	0	0
3	3	0	1	0	0	0
	:	:	: :	:	:	

- Many values are missing!
- Z-score existing variables, rounding to the nearest int.

- Many values are missing!
- Z-score existing variables, rounding to the nearest int.
- Convert each z-score into its own binary column.

- Many values are missing!
- Z-score existing variables, rounding to the nearest int.
- Convert each z-score into its own binary column.

Many Ways to Model, What Do We Learn?

max-pool, combine the outputs, and run through 2

fully connected layers for prediction.

2 Layer/512 node LSTM with sequential hourly data; at end of window, use the final hidden state to predict output.

Many Ways to Model, What Do We Learn?

fully connected layers for prediction.

state to predict output.

Many Ways to Model, What Do We Learn?

RNNs on Sequences

To model sequences, we need:

- 1. To deal with variable-length sequences
- 2. To maintain sequence order
- 3. To keep track of long-term dependencies
- 4. To share parameters across the sequence

Let's turn to recurrent neural networks.

Slides courtesy of Harini Suresh + MIT 6.S191 | Intro to Deep Learning | IAP 2018

Example Network

Example Network

RNNS **remember** their previous state:

 x_0 : vector representing first word s_0 : cell state at t = 0 (some initialization) s_1 : cell state at t = 1

$$s_1 = tanh(Wx_0 + Us_0)$$

W, U: weight matrices

MIT 6.S191 | Intro to Deep Learning | IAP 2018

RNNS **remember** their previous state:

 x_1 : vector representing second word s_1 : cell state at t = 1 s_2 : cell state at t = 2

$$s_2 = tanh(Wx_1 + Us_1)$$

W, U: weight matrices

"Unfolding" the RNN across time:

"Unfolding" the RNN across time:

notice that we use the same parameters, W and U

"Unfolding" the RNN across time:

 s_n can contain information from all past timesteps

Why do LSTMs help?

- Forget gate allows information to pass through unchanged
- 2. Cell state is separate from what's outputted
- 3. s_i depends on s_{i-1} through addition!
 - \rightarrow derivatives don't expand into a long product!

Predict Onsets of Interventions

- Delay prediction by 6-hour gap time.
- Attempt to predict onest, weaning, staying off, staying on.

	Onset	Weaning	Stay Off	Stay On
Ventilation	0.005	0.017	0.798	0.18
Vasopressor	0.008	0.016	0.862	0.114
NI-Ventilation	0.024	0.035	0.695	0.246
Colloid Bolus	0.003	-	-	-
Crystalloid Bol	0.022	-	_	-

NNs Do Well; Improved Representation Helps

()
Ă
\mathbf{O}
Ř
J
Ð
σ
\subseteq
- I
б
Φ
5
\triangleleft

			Ir	terventi	on Type		1
Task	Model	VENT	NI-VENT	VASO	COL BOL	CRYS BOL	
-	Baseline	0.60	0.66	0.43	0.65	0.67	Den
CC	LSTM Raw	0.61	0.75	0.77	0.52	0.70	пер
AU	LSTM Words	0.75	0.76	0.76	0.72	0.71	"nhy
-	CNN	0.62	0.73	77	0.70	0.69	
	Baseline	0.83	0.71	0.74	-	-	mise
Can	LSTM Raw	0.90	0.80	0.91	-	-	
We	LSTM Words	0.90	0.81	0.91	-	-	incr
	CNN	0.91	0.80	0.91	.	-	
ⁿ	Baseline	0.50	0.79	0.55	-	-	Inte
S S	LSTM Raw	0.96	0.86	0.96	-	-	low
Sta	LSTM Words	0.97	0.86	0.95	-	-	IOW
	CNN	0.96	0.86	0.96	-	-	
)ff	Baseline	0.94	0.71	0.93	-	-	Exa
NO NO	LSTM Raw	0.95	0.86	0.96	-	-	
Sta	LSTM Words	0.97	0.86	0.95	-	-	
	CNN	0.95	0.86	0.96	-	-	
•	Baseline	0.72	0.72	0.66	=	-	Doo
CIC	LSTM Raw	0.86	0.82	0.90	-	-	Dee
ME	LSTM Words	0.90	0.82	0.80	-	-	in a
	CNN	0.86	0.81	0.90	-	-	in g
							imp

Representations with "physiological words" for missingness significantly increased AUC for interventions with the lowest proportion of examples.

Deep models perform well in general, but words are important for ventilation tasks.

Feature-Level Occlusions Identify Per-Class Features

Decrease in AUC

Physiological data were more important for the more **invasive** interventions.

Clinical **note topics** were more important for **less invasive** tasks.

Convolutional Filters Target Short-term Trajectories

Most differentiated features of 10 real patient trajectories that are highest/lowest activating for each task.

Higher diastolic blood pressure, respiratory rate, and heart rate, and lower oxygen saturation : **Hyperventilation**

Decreased systolic blood pressure, heart rate and oxygen saturation rate : Altered peripheral perfusion or stress hyperglycemia

top 10 trajectories
bottom 10 trajectories

Decreased creatinine, phosphate, oxygen saturation and blood urea nitrogen : **Neuromuscular respiratory failure**

Convolutional Filters Target Short-term Trajectories

- "Hallucinations" give insight into underlying properties of the network.
- The trajectories are made to maximize the output of the model, (do not correspond to physiologically plausible trajectories).

Outline

- 1. What's Time Got To Do With It?
- 2. Case Study 1: MTGPs for Mortality Prediction and TBI
- 3. Case Study 2: RNNs/CNNs for Intervention Onset Prediction
- 4. What's Out There?
- 5. Project Discussion

Remember That Life Happens Outside the Clinic!

Example: Wearable Data from Project Myalo

- Phone sensors offer a potential low-cost, low-barrier method for digital quantification of behavior that can achieve scalability better than other wearable sensors
- Tracking over time: mood, sleep, physical activity, cognitive function, social activities!

Some Technology Required...

SENSING MENTAL HEALTH

What Can We Do With A Digital Phenotype?

"Moment-by-moment quantification of the individual-level human phenotype in situ using data from personal digital devices"

- Expert-Reported Data (EHR)
- Self-Reported Data (Surveys)
- Passive Data (Ambulatory)
 - Spatial trajectories (GPS)
 - Physical mobility (accelerometer)
 - Social networks/dynamics (call/text)
 - Voice samples (microphone)

What Could We Ask With A Rich Phenotype?

- How do depressed patients (**Expert-Reported**) divide time between home and work (**Passive**)?
- Do the size and reciprocity of interaction networks (**Passive**) help with anxiety (**Self-Reported**)?
- Does activity (Passive) impact mood (Self-Reported) differently post-partum (Expert-Reported)?

Main Take Aways

- Combining data across modalities and time can be powerful.
- Kernel representations are intuitive comparisons for intra/inter signal modelling.
- Representations improve task performance.

Outline

- 1. What's Time Got To Do With It?
- 2. Case Study 1: MTGPs for Mortality Prediction and TBI
- 3. Case Study 2: RNNs/CNNs for Intervention Onset Prediction
- 4. What's Out There?
- 5. Project Discussion